5. Crossed Products of Finite Groups

Let R be a ring and let G be a group. To start with, a crossed product $R \rtimes G$ is a generalized group ring. It has as an R-basis the set G which is a copy of G, so that each element of $R \rtimes G$ is uniquely a finite sum $\sum_{x \in G} r_x x$ with $r_x \in R$. Addition is as expected, but multiplication has two new wrinkles, a twisting and an action. Specifically, for $x, y \in G$, we have

\[x \cdot y = t(x, y) x y \]

where $t : G \times G \to U = U(R)$, the group of units of R. Furthermore, for $x \in G$ and $r \in R$, we have

\[r x = x r \]

where $x \in \text{Aut } R$. The twisting and action are interrelated by conditions precisely equivalent to $R \rtimes G$ being associative. Note that we can and will assume that $1 = 1$. It follows that R is naturally embedded in the crossed product via $r \mapsto r 1$. On the other hand, G is in general not contained in $R \rtimes G$. Nevertheless, each x is a unit in the ring, $\mathcal{G} = \{u^{-1} x u | u \in U, x \in G\}$ is the group of so-called trivial units of $R \rtimes G$ and $\mathcal{G} / U \simeq G$.

We study crossed products because they occur naturally. We do not merely go around constructing them. For example

Lemma. Let $N \triangleleft H$. Then $K[H] = K[N] \rtimes (H/N)$.

Proof. Set $R = K[N]$ and $G = H / N$. For each $x \in G$ let $x \in H$ be a fixed inverse image. Then $H = \bigcup_x N x$ implies that

\[K[H] = \bigoplus_x K[N] x = \bigoplus x R x \]

so G is an R-basis for $K[H]$.

Since $N \triangleleft H$, $x^{-1} N x = N$ so $x^{-1} K[N] x = K[N]$ and x induces a conjugation automorphism on R. In particular, if $x \in G$ and $r \in R$, then

\[r x = x^{-1} x r = x r x \]

and we see that an action occurs. Note that the action is trivial if N is central in H.

29
Next, for \(x, y \in G \) we have \(N\bar{x} \cdot N\bar{y} = N\bar{xy} \) so \(\bar{x} \bar{y} = t(x, y)\bar{xy} \) for some \(t(x, y) \in N \subseteq U(R) \). Furthermore, this twisting is trivial if we can choose a consistent set of coset representatives, that is, if \(H = N \rtimes G \). Finally we observe that \(K[H] \) is certainly associative.

Several remarks are in order. (1) Finite index problems occur frequently in the study of group rings. Namely, suppose we know information about \(K[N] \) with \(N \) a normal subgroup of \(H \) of finite index. The goal is to lift this information to \(K[H] \). Since \(K[H] = K[N] \rtimes (H/N) \), the structure of crossed products of finite groups can sometimes help. We will offer a nice example of this. (2) Suppose \(I \triangleleft K[H] \) is controlled by \(N \) so that \(I = L \cdot K[H] \) with \(L = I \cap K[N] \). It then follows easily that \(K[H]/I = (K[N]/L) \rtimes (H/N) \). (3) Finally, the same argument shows that if we are given \(R \rtimes H \) and \(N \triangleleft H \), then \(R \rtimes H \supseteq R \rtimes N \) and \(R \rtimes H = (R \rtimes N) \rtimes (H/N) \). Thus we do not leave the family of crossed products.

Certain special cases of crossed products have their own names. If there is no action or twisting, then \(R \rtimes G = R[G] \) is an ordinary group ring. If the action is trivial, then \(R \rtimes G = R^t[G] \) is a twisted group ring. Finally, if the twisting is trivial, then \(R \rtimes G = RG \) is a skew group ring. We frequently construct the latter.

Lemma 2. Let \(G \to \text{Aut} R \) be a group homomorphism and define \(RG \) as above. Then this skew group ring is associative.

Note that since the twisting is trivial in \(RG \) we have \(\bar{x} \bar{y} = \bar{xy} \). Thus we can drop the overbars here and assume that \(RG \supseteq G \). The skew group ring is a useful tool in the Galois theory of rings. We will discuss this later on.

Historically, crossed products arose in the study of division rings. Let \(K \) be a field and let \(D \) be a division algebra finite-dimensional over its center \(K \). If \(F \) is a maximal subfield of \(D \), then \(\dim_K D = (\dim_K F)^2 \). Suppose that \(F/K \) is normal, although this is not always true. If \(x \in \text{Gal}(F/K) = G \), then the Skolem-Noether theorem implies that there exists \(\bar{x} \in D \setminus 0 \) with \(\bar{x}^{-1}fx = f\bar{x} \) for all \(f \in F \). Furthermore, \(\bar{x} \bar{y} \) and \(\bar{xy} \) agree in their action on \(F \) so \(\bar{x} \bar{y} \bar{x}^{-1} \bar{y}^{-1} \in C_D(F) = F \). Once we show that the elements \(\bar{x} \) for \(x \in G \) are linearly independent over \(F \), then we conclude by computing dimensions that \(D = \oplus \sum_{x \in G} F\bar{x} = F \rtimes G \).

More generally we say that \(A \) is central simple over \(K \), if \(A \) is a finite-dimensional simple algebra over its center \(K \). Thus \(A = M_n(D) \) for some \(n \) and division ring \(D \) with \(\mathcal{Z}(D) = K \). Two such algebras \(A \) and \(B \) are equivalent if they have the same \(D \). The equivalence classes then form a group under tensor product \(\otimes_K \), the Brauer group. Now given \(A \), one can show that there exists \(B \sim A \) with \(B = F \rtimes G \). But \(F \rtimes G \) is determined by the twisting function \(t: G \times G \to F \), a 2-cocycle. Thus, in this way we obtain the homological characterization of the Brauer group as the 2nd cohomology group.

We now begin to consider the ring theoretic properties of \(R \rtimes G \) with \(G \) finite. We start with the essential version of Maschke's theorem (see [7]).
THEOREM 3. Given \(R \ast G \) with \(G \) finite. Let \(W \subseteq V \) be \(R \ast G \)-modules with no \(|G| \)-torsion. Then \(W \text{ess}_R V \) if and only if \(W \text{ess}_{R \ast G} V \).

PROOF. We need only show that \(W \text{ess}_{R \ast G} V \) implies that \(W \text{ess}_R V \) since the other implication is obvious.

Case 1. Suppose \(V = W \oplus U \) where \(U \) is a complementary \(R \)-submodule. Then for all \(x \in G, V = Wx \oplus Ux = W \oplus Ux \) and we let \(\pi_x: V \to W \) be the \(R \)-homomorphism determined by this decomposition. Note that if \(v = w + ux \), then \(v\overline{y} = w\overline{y} + ux\overline{y} \), so clearly

\[
\pi_{xy}(v\overline{y}) = w\overline{y} = \pi_x(v)\overline{y}.
\]

It follows that \(\pi = \sum_x \pi_x \) is an \(R \ast G \)-homomorphism from \(V \) to \(W \) since

\[
\pi(v\overline{y}) = \sum_x \pi_x(v\overline{y}) = \sum \pi_{xy}(v\overline{y}) = \sum_x \pi_x(v)\overline{y} = \pi(v)\overline{y}.
\]

Furthermore, we have \(\pi(w) = |G|w \) so \(\ker \pi \cap W = 0 \) since \(V \) has no \(|G| \)-torsion, and hence, \(\ker \pi = 0 \) since \(W \text{ess}_{R \ast G} V \). Finally, let \(u \in U \) and set \(w = \pi(u) \).

Then \(|G|u - w \in \ker \pi \) so \(|G|u \in W \cap U = 0 \) and \(u = 0 \).

Case 2. Now for the general case. Choose \(U_R \subseteq V \) maximal with \(U_R \cap W = 0 \). Then \(W \oplus U \text{ess}_R V \) and set \(E = \bigcap_x (W \oplus U)x \). It follows that \(E \text{ess}_R V \) and that \(E \) is an \(R \ast G \)-submodule. Furthermore, \(W \subseteq E \subseteq W \oplus U \) so \(E = W \oplus (U \cap E) \). By Case 1, \(W = E \) so \(W \text{ess}_R V \).

THEOREM 4 [2]. Let \(R \) be a semiprime ring with no \(|G| \)-torsion. Then \(R \ast G \) is semiprime.

PROOF. Let \(N \triangleleft R \ast G \) with \(N^2 = 0 \). If \(L = l_{R \ast G}(N) \), then \(L \triangleleft R \ast G \) and \(L \text{ess}_{R \ast G} R \ast G \) as right ideals. Maschke’s theorem now implies that \(L \text{ess}_R R \ast G \) so \((L \cap R) \text{ess}_R R \). Since \(R \) is semiprime, we conclude that \(L \cap R = 0 \) and then \(N \subseteq l_{R \ast G}(L \cap R) = 0 \), by the freeness of \(R \ast G \) over \(R \).

The proof given above is from [7] but the original techniques are still needed for the following generalization.

THEOREM 5 [8]. Given \(R \ast G \) with \(G \) finite.

(i) If \(R \ast G \) is semiprime and \(H \subseteq G \), then \(R \ast H \) is semiprime.

(ii) Assume that \(R \ast P \) is semiprime for \(P = 1 \) and all elementary abelian \(p \)-subgroups \(P \subseteq G \) such that \(R \) has \(p \)-torsion. Then \(R \ast G \) is semiprime.

Now let us study the prime ideals in \(R \ast G \) with \(G \) finite. Note that \(G \) permutes the ideals of \(R \) by conjugation. If \(A \triangleleft R \ast G \), then \(A \cap R \) is a \(G \)-invariant ideal of \(R \). Conversely, if \(I \) is a \(G \)-invariant ideal of \(R \), then \(I \ast G = I(R \ast G) \) is an ideal of \(R \) with \((I \ast G) \cap R = I \). Moreover, \((R \ast G)/(I \ast G) = (R/I) \ast G \).

To study the prime ideals \(P \) of \(R \ast G \) we might as well mod out by \((P \cap R) \ast G \) and assume that \(P \cap R = 0 \). This forces \(R \) to be \(G \)-prime, a condition somewhat
weaker than being prime. Indeed for G finite it means that there exists a prime ideal Q of R with $\bigcap_{x \in G} Q^x = 0$. Note that $\{Q^x| x \in G\}$ is the set of minimal primes of R and hence is uniquely determined by R. There are two cases to consider according to whether R is prime or not. We start with the latter situation.

Let H be a subgroup of G and let $I \triangleleft R \ast H$. Then $I(R \ast G)$ is a right ideal of $R \ast G$ and we denote by I^G the unique largest two-sided ideal it contains. In other words, the induced ideal I^G is given by

$$I^G = \text{Id}(I(R \ast G)) = \bigcap_{x \in G} (I(R \ast G))^x.$$

If J is a second ideal of $R \ast H$, then $I^G J^G \triangleleft R \ast G$ and

$$I^G J^G \subseteq I(R \ast G) J^G \subseteq IJ^G \subseteq IJ(R \ast G).$$

Thus, induction satisfies the submultiplicative formula $I^G J^G \subseteq (IJ)^G$. Note that $H \triangleleft G$ implies that

$$I^G = \left(\bigcap_{x \in G} I^x \right) (R \ast G)$$

and H controls I^G. The first main result on primes is

Theorem 6 [5]. Given $R \ast G$ with G finite and suppose Q is a prime ideal of R with $\bigcap_{x \in G} Q^x = 0$. Let H be the stabilizer of Q in G. Then the map $T \mapsto T^G$ yields a one-to-one correspondence between the primes T of $R \ast H$ with $T \cap R = Q$ and the prime ideals P of $R \ast G$ with $P \cap R = 0$.

Note that there is an obvious one-to-one correspondence between the primes T of $R \ast H$ with $T \cap R = Q$ and the prime ideals \bar{T} of $(R \ast H)/(Q \ast H) = (R/Q) \ast H$ with $\bar{T} \cap (R/Q) = 0$. This, therefore, reduces considerations to the prime case.

Now suppose that R is prime and consider all R-module homomorphisms $f: RA \to R \ast R$ where A runs over all nonzero two-sided ideals of R. We say that $f \sim g$ if and only if f and g agree on their common domain and we let \hat{f} denote the equivalence class of f. Then $Q_l(R)$, the set of all such equivalence classes, becomes a ring under function addition and composition. Furthermore, R embeds in $Q_l(R)$ via $r \mapsto$ right multiplication by r. $Q_l(R)$ is called the (left) Martindale ring of quotients of R.

We will discuss $S = Q_l$ in more detail later on. For now it suffices to know that $C = Z(S)$ is a field called the extended centroid of R. Also, any automorphism σ of R extends uniquely to one of S. We say that σ is X-inner if it becomes inner on S.

Given $R \ast G$, there exists a unique extension to a crossed product $S \ast G$. We let $G_{\text{inn}} = \{x \in G| x^x \text{ is } X\text{-inner on } R\}$. Then $G_{\text{inn}} \triangleleft G$ and the second main result on primes is

Theorem 7 [5]. Let $R \ast G$ be a crossed product with G finite and R prime. Set $S = Q_l(R)$ and let $E = C_{S \ast G}(S)$.
(i) $E = C^t[G_{\text{inn}}]$ is a twisted group algebra of G_{inn} over the field C, the extended centroid of R.

(ii) Conjugation by each $\overline{z} \in R \ast G \subseteq S \ast G$ yields an action of G on E.

(iii) There exists a one-to-one correspondence between the prime ideals P of $R \ast G$ with $P \cap R = 0$ and the G-orbits of primes of E.

To be precise, the G-orbit $\{T^\overline{z}\}$ of primes of E corresponds to

$$P = \left(\bigcap_{z \in G} T^\overline{z} \right) \cdot (S \ast G) \cap (R \ast G).$$

By combining the above two results we see that for R a G-prime ring, the primes P of $R \ast G$ with $P \cap R = 0$ correspond to the H-orbits of primes of $E = C^t[H_{\text{inn}}]$ where C is the extended centroid of R/Q. Since E is a finite-dimensional C-algebra, this implies that there are only finitely many primes P and indeed we have

Corollary 8. Given $R \ast G$ with G finite and R a G-prime ring.

(i) If P is a prime ideal of $R \ast G$, then P is a minimal prime if and only if $P \cap R = 0$.

(ii) There exist only finitely many minimal primes P_1, P_2, \ldots, P_n and $n \leq |G|$.

(iii) If $J = P_1 \cap P_2 \cap \cdots \cap P_n$, then J is the unique largest nilpotent ideal of $R \ast G$ and $J^{[G]} = 0$.

This result is now a special case of properties of finite normalizing extensions. But more information is available here. For example, in the notation of Theorem 6, the number of primes P with $P \cap R = 0$ is at most equal to the number of conjugacy classes of H (not of G). Furthermore, if $\text{char} C = p > 0$, then only the p-regular classes matter. In particular, if H_{inn} is a p-group, then there exists a unique prime P with $P \cap R = 0$.

We can also use these results to describe when $R \ast G$ is prime. It reduces to the twisted group algebra case which is still unsolved.

The above material was developed to study prime ideals in group rings of polycyclic-by-finite groups. For example, if G is such a group, then G has a normal subgroup G_0 of finite index which is orbitally sound, and hence, we essentially know the primes of $K[G_0]$. Furthermore, $K[G] = K[G_0] \ast (G/G_0)$ so the preceding results can apply. Indeed, Theorem 6 translates almost directly as follows. Let P be a prime ideal of $K[G]$ and let Q be a prime of $K[G_0]$ minimal over $P \cap K[G_0]$. If H is the stabilizer of Q in G, then $G \supseteq H \supseteq G_0$ and there exists a prime T of $R \ast (H/G_0) = K[H]$ with

$$P = T^G = \bigcap_{z \in G} (T \cdot K[G])^z.$$

It remains to consider T and, in an attempt to apply Theorem 7 directly, Lorenz and I computed X-inner automorphisms using Δ-methods. It turned out that yet another variant of the Δ-method was the missing ingredient, namely
Proposition 9 [4]. Let G be a polycyclic-by-finite group and let I be an ideal of $K[G]$ with $I = (I \cap K[\Delta]) \cdot K[G]$ and $I \cap K[\Delta] = Q_1 \cap Q_2 \cap \cdots \cap Q_n$, an intersection of almost faithful primes. If $A, B \leq K[G]$ with $AB \subseteq I$, then $\theta(A)\theta(B) \subseteq \theta(I) = I \cap K[\Delta]$. In particular, I is a semiprime ideal and if all Q_i are G-conjugate, then I is a (standard) prime.

This was sufficient to show that T above is image standard. Thus, to start with, if P is a prime ideal of $K[G]$, then $P = T^G$ for T an image standard prime of $K[H]$ with $|G : H| < \infty$. This sounds like a complete solution but it does leave a number of questions unanswered. Most notably we ask what are the possibilities for H and how unique is the situation. For this we need some additional definitions.

Let N be a subgroup of G. Then N is orbital if and only if it has a finite number of G-conjugates, that is, $|G : \mathcal{N}_G(N)| < \infty$. N is said to be an isolated orbital if it is orbital and for any larger orbital $N_1 > N$ we have $|N_1 : N| = \infty$. Finally, G is orbitally sound if all isolated orbitals are normal. Note that any finite orbital subgroup of G is contained in $\Delta^+(G)$ and that Δ^+ is an isolated orbital. The answer to the first question is that H can be taken to be the normalizer of an isolated orbital subgroup. Thus if G is orbitally sound, then $H = G$. Next, if $H = \mathcal{N}_G(N)$, then what is N? Again we need some more definitions.

If $I < K[G]$, then we let $I^\dagger = \{x \in G | x - 1 \in I\}$. Then I^\dagger is the kernel of the homomorphism $G \to K[G]/I$ and $I^\dagger < G$. We can now state that $H = \mathcal{N}_G(T^\dagger)$ and, more properly, H is the normalizer of the unique isolated orbital subgroup of finite index above T^\dagger.

Note that any standard prime is induced from a prime ideal of $K[\Delta]$. This leads to our last definition. Let $N \subseteq G$ and set $H = \mathcal{N}_G(N)$. Then we let $\mathcal{N}_G(N)$ be the subgroup of G with $H \supseteq \mathcal{N}_G(N) \supseteq N$ and $\mathcal{N}_G(N)/N = \Delta(H/N)$. We can now state the following three results of [6]. The first of course is based on the work of [9].

Theorem 10 (Existence) [6, 9]. Let G be polycyclic-by-finite and let P be a prime ideal of $K[G]$. Then there exists an isolated orbital subgroup N of G and a prime L of $K[\mathcal{N}_G(N)]$ with $|N : L^\dagger| < \infty$ and $P = L^G$.

Note that $\mathcal{N}_G(N)/N$ is torsion-free abelian so $\mathcal{N}_G(N)/L^\dagger$ is finite-by-abelian (and center-by-finite). Thus L is essentially a prime of a commutative group algebra. We call N above a vertex of P and L a source.

Theorem 11 (Uniqueness) [6]. Let G be polycyclic-by-finite and let P be a prime of $K[G]$. Then the vertices of P are unique up to conjugation in G. Furthermore, if N is a vertex, then the sources for this N are unique up to conjugation by $\mathcal{N}_G(N)$.

Theorem 12 (Converse) [6]. Let N be an isolated orbital subgroup of the polycyclic-by-finite group G. If L is a prime ideal of $K[\mathcal{N}_G(N)]$ with $|N : L^\dagger| < \infty$, then L^G is prime.
It is a consequence of the last result that every isolated orbital subgroup is a vertex. Thus if all primes are image standard, then all isolated orbitals are normal and G is orbitally sound. The above has been extended to

COROLLARY 13 [1]. Let N be an isolated orbital subgroup of the polycyclic-by-finite group G. If L is a prime ideal of $K[N]$ having only finitely many conjugates under $N_G(N)$, then L^G is prime.

In closing we briefly mention the beautiful results on finite normalizing extensions. These deserve a much more detailed discussion than we can offer here. Let $S \supseteq R$ be rings with the same 1. Then S is a finite normalizing extension of R if there exist $s_1, s_2, \ldots, s_n \in S$ with $S = \sum_1^n Rs_i$ and $s_i R = Rs_i$ for all i. For example, we could have $S = R * G$ with G a finite group or S could be a finite centralizing extension where each s_i centralizes R. The following result was contributed to by a number of people. But by far the most difficult part is the incomparability due to Heinicke and Robson. So we credit all of it to their paper.

THEOREM 14 [3]. Let $S = \sum_1^n Rs_i$ be a finite normalizing extension of R.

(i) (Cutting Down) If P is a prime ideal of S, then $P \cap R = Q_1 \cap Q_2 \cap \cdots \cap Q_t$ is an intersection of $t \leq n$ minimal covering primes of R. Furthermore, all R/Q_i are isomorphic.

(ii) (Lying Over) Let Q be a prime ideal of R. Then there exist primes P_1, P_2, \ldots, P_s of S with $1 \leq s \leq n$ such that Q is minimal over each $P_i \cap R$.

(iii) (Incomparability) Let P be a prime ideal of S and let $I \triangleleft S$ with $I \supset P$. Then $I \cap R > P \cap R$.

A continuation of [3] considers nilpotent ideals of S. Furthermore, the authors study intermediate extensions, that is, rings T contained between R and S. They obtain a strong relationship between the primes of R and those of T. However, they are less successful relating those of S and T. We remark that not every finite extension of interest is an intermediate extension. For example, let R be a local commutative algebra of characteristic $p > 0$ with $J = JR \neq 0$ and suppose δ is a derivation of R with $\delta^p = 0$ and $\delta J \not\subseteq J$. Then $R[x; \delta|x^p = 0]$ is not an intermediate extension of R.

References

