CHAPTER VII

COMMUTATIVE MATRICES

7.01 We have already seen in §2.08 how to find all matrices commutative with a given matrix x which has no repeated roots. We shall now treat the somewhat more complicated case in which x is not so restricted. If

$$xy = yx$$

then $x'y = yx'$ so that, if $f(\lambda)$ is a scalar polynomial, then $f(x)y = yf(x)$. In particular, if $f(\lambda) = \lambda^k$, then $f(x)y = yf(x)$.
It is also convenient to put \(e^{ij}_{pq} = 0 \) for \(p > n_i \) or \(q > n_j \).

\[
\begin{array}{cccc}
 n_1 & n_2 & n_3 & \cdots \\
 11 & 12 & 13 & \cdots \\
 21 & 22 & 23 & \cdots \\
 31 & 32 & 33 & \cdots \\
\end{array}
\]

Fig. 1

The expression for \(x \) is now

\[
x = \sum_{i=1}^{s} \sum_{p=1}^{n_i-1} e^{ii}_{p,p+1} = \sum_{i=1}^{s} x_i
\]

and we may set

\[
y = \sum_{i,j,p,q} \eta^{ij}_{pq} e^{ij}_{pq} = \sum_{i,j} y_{ij}
\]

where

\[
y_{ij} = e_{ij} e_i = \sum_{p=1}^{n_i} \sum_{q=1}^{n_j} \eta^{ij}_{pq} e^{ij}_{pq}.
\]

The equation \(xy = yx \) is then equivalent to

(2) \[x y_{ij} = y_{ij} x_i \quad (i, j = 1, 2, \cdots, s). \]

If we now suppress for the moment the superscripts \(i, j \), which remain constant in a single equation in (2), we may replace (2) by

\[
\sum_{p=1}^{n_i-1} e_{p,p+1} \sum_{i=1}^{n_i} \sum_{m=1}^{n_j} \eta_{im} e_{lm} = \sum_{i=1}^{n_i} \sum_{m=1}^{n_j} \eta_{im} e_{lm} \sum_{q=1}^{n_j-1} e_{q,q+1}
\]

or

(3) \[\sum_{m=1}^{n_i} \sum_{p=1}^{n_i-1} \eta_{p+1,q+1} e_{pm} = \sum_{m=1}^{n_i} \sum_{q=1}^{n_j-1} \eta_{i,q+1} e_{m,q+1}. \]

Equating corresponding coefficients then gives

(4) \[\eta_{p+1,q+1} = \eta_{pq}. \]

Since \(q \geq 1 \) on the right of (3), it follows that \(\eta_{p+1,1} = 0 \) \((p = 1, 2, \cdots, n_i - 1)\) and, since \(p \leq n_i - 1 \) on the left, \(\eta_{n_i,q} = 0 \) \((q = 1, 2, \cdots, n_j - 1)\) and hence from (4)

(5) \[\eta_{p+t,q-t} = 0 = \eta_{n_i-t,q-t}. \]

where \(p = 0, 1, \cdots, n_i - t, q = t + 1, s + 2, \cdots, n_j - 1, t = 0, 1, \cdots. \)

From (4) we see that in \(y_{ij} \) all coordinates in an oblique line parallel to the main diagonal of the original array have the same value; from the first part of (5) those to the left of the oblique \(AB \) through the upper left hand corner
are zero, as are also those to the left of the oblique \(CD \) through the lower right hand corner; the coordinates in the other obliques are arbitrary except that, as already stated, the coordinates in the same oblique are equal by (4). This state of affairs is made clearer by figure 2 where all coordinates are 0 except those in the shaded portion.

![Diagram](image)

Fig. 2

As an example of this take

\[
\alpha \begin{array}{c}
1 \\
\alpha \\
\alpha \\
1 \\
\end{array}
\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\alpha
\end{array}
\]

\[x = \alpha \begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\alpha
\end{array}
\begin{array}{c}
\alpha \\
1 \\
1 \\
1 \\
\alpha
\end{array}
\]

The above rules then give for \(y \)

\[
\begin{array}{cccccccccccc}
a_0 & \ell_0 & b_0 & b_1 & \ldots & c_0 & c_1 \\
\ldots & a_0 & \ldots & b_0 & \ldots & \ldots & c_0 \\
d_0 & d_1 & e_0 & e_1 & e_2 & \ldots & f_0 & f_1 & f_2 \\
\ldots & d_0 & \ldots & e_0 & e_1 & \ldots & f_0 & f_1 \\
\ldots & \ldots & \ldots & \ldots & e_0 & \ldots & \ldots & f_0 \\
g_0 & g_1 & h_0 & h_1 & h_2 & i_0 & i_1 & i_2 & i_3 & i_4 \\
\ldots & g_0 & \ldots & h_0 & h_1 & \ldots & i_0 & i_1 & i_2 & i_3 \\
\ldots & \ldots & \ldots & \ldots & h_0 & \ldots & \ldots & i_0 & i_1 \\
\ldots & i_0 & i_1 \\
\end{array}
\]

(6)

where the dots represent 0.
If we arrange the notation so that \(n_1 \leq n_2 \leq \cdots \leq n_s \), a simple enumeration shows that the number of independent parameters in \(y \) is
\[
(2s - 1)n_1 + (2s - 3)n_2 + \cdots + n_s.
\]
We have therefore the following theorem which is due to Frobenius.

Theorem 1. If the elementary divisors of \(x \) are \((\lambda - \lambda_i)^{n_{i1}}, i = 1, 2, \cdots, r,\)
\(j = 1, 2, \cdots, s_i,\) where \(\lambda_1, \lambda_2, \cdots, \lambda_r\) are all different and \(n_{i1} \leq n_{i2} \leq \cdots \leq n_{is_i}\), then the general form of a matrix commutative with \(x \) depends on
\[
\sum_{i=1}^{r} \sum_{j=1}^{s_i} (2s - 2j + 1)n_{ij}
\]

independent parameters.

7.02 Commutative sets of matrices.

The simple condition \(xy = yx \) may be replaced by the more stringent one that \(y \) is commutative with every matrix which is commutative with \(x \). To begin with we shall merely assume that \(y \) is commutative with each of a particular set of partial idempotent elements \(e_i \); as in the previous section we may assume that \(x \) has only one principal idempotent element.

In order that \(e_i y = ye_i \) for every \(i \) it is necessary and sufficient that \(y_{ii} = 0 \) when \(i \neq j \); if \(u_1, u_2, \cdots, u_s \) are the partial nilpotent elements of \(x \) corresponding to \(e_1, e_2, \cdots, e_s \) and we set \(m_i = n_i - 1 \), this gives for \(y \)
\[
y = \sum_{i} (\eta_{i0}e_i + \eta_{i1}u_i + \cdots + \eta_{in_i}u_i^{n_i}).
\]

If we now put \(z = \sum_{i} (\beta_i e_i + u_i) \), where no \(\beta_i = 0 \), and if \(g(\lambda) \) is any scalar polynomial, then (cf. §2.11)
\[
g(z) = \Sigma g(\beta_i e_i + u_i) = \Sigma (g(\beta_i)e_i + g'(\beta_i)u_i + \cdots + g^{(m_i)}(\beta_i)u_i^{n_i}/m_i!)
\]
and when \(y \) is given, we can always find \(g(\lambda) \) so that
\[
\eta_{ik} = g^{(k)}(\beta_i)/k!
\]
provided the \(\beta \)'s are all different. Hence every \(y \), including \(x \) itself, can be expressed as a polynomial in \(z \).

We now impose the more exacting condition that \(y \) is permutable with every matrix permutable with \(x \). Let \(n_{ij} \) \((i \neq j)\) be the matrix of the same form as \(y_{ij} \) in §7.01 but with zero coordinates everywhere except in the principal oblique; for example in (6) \(u_{22} \) is obtained by putting \(f_0 = 1 \) and making every other coordinate 0. We then have
\[
e_i u_{ij} = u_{ij}e_i, \quad u_{ji} = u_{ij}u_i.
\]
Hence \(y u_{ij} = u_{ij} y \) gives \(y_i u_{ij} = u_{ij} y_i \) and therefore from (7)

\[
(\eta_{i0} e_i + \eta_{i1} u_i + \cdots + \eta_{im} u_i^m) u_{ij} = u_{ij} (\eta_{j0} e_j + \eta_{j1} u_j + \cdots + \eta_{jm} u_j^m) u_{ij}
\]

from which we readily derive for all \(i, j \) and \(k \)

\[
\eta_{ik} = \eta_{jk}
\]

with the understanding that \(\eta_{ik} \) does not actually occur when \(k > m_i \). When \(\tau \) is the matrix used in deriving (6), these conditions give in place of (6)

\[
\begin{array}{ccccccc}
 a_0 & a_1 & \cdots & \cdots & \cdots & \cdots & \cdots \\
 \cdot & a_0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
 \cdot & \cdot & a_0 & a_1 & a_2 & \cdots & \cdots \\
 \cdot & \cdot & a_0 & a_1 & \cdots & \cdots & \cdots \\
 \cdot & \cdot & \cdot & a_0 & a_1 & a_2 & \cdots \\
 \cdot & \cdot & \cdot & \cdot & \cdot & a_0 & \cdots \\
 \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & a_0 \\
\end{array}
\]

(8)

Comparing this form with (7) we see that \(y \) is now a scalar polynomial in \(x \), which in the particular case given above becomes \(g(x - \alpha) \) where

\[
g(\lambda) = a_0 + a_1 \lambda + a_2 \lambda^2 + a_3 \lambda^3 + a_4 \lambda^4.
\]

The results of this section may be summarized as follows.

Theorem 2. Any matrix which is commutative, not only with \(x \), but also with every matrix commutative with \(x \), is a scalar polynomial in \(x \).

7.03 Rational methods. Since the solution of \(xy - yx = 0 \) for \(y \) can be regarded as equivalent to solving a system of linear homogeneous equations, the solution should be expressible rationally in terms of suitably chosen parameters; the method of §7.01, though elementary and direct, cannot therefore be regarded as wholly satisfactory. The following discussion, which is due to Frobenius, avoids this difficulty but is correspondingly less explicit.

As before let \(xy = yx \) and set \(a = \lambda - x \); also let \(b = L^{-1} a M^{-1} \) be the normal form of \(a \). If \(u \) is an arbitrary polynomial in \(\lambda \) and we set

\[
P = L^{-1} (au + y)L, \quad Q = M (ua + y) M^{-1},
\]
then
\[Pb = PL^{-1}aM^{-1} = L^{-1}(au + y)aM^{-1} = L^{-1}a(ua + y)M^{-1} = bQ. \]
Conversely, if \(Pb = bQ \) and, using the division transformation, we set
\[(9) \]
\[LPL^{-1} = av + y, \quad M^{-1}QM = v_1a + y_1, \]
where \(y \) and \(y_1 \) are constants, then
\[0 = Pb - bQ = L^{-1}(av + y)aM^{-1} - L^{-1}a(v_1a + y_1)M^{-1} \]
or \(a(v - v_1)a = ay_1 - ya \). Here the degree on the left is at least 2 and on
the right only 1 and hence by the usual argument both sides of the equation
vanish. This gives
\[av = av_1a, \quad ay_1 = ya \]
whence \(v_1 = v \) and, since \(a = \lambda - x \), also \(y_1 = y \) so that \(xy = yx \).
Hence we can find all matrices commutative with \(x \) by finding all solutions of
\[(10) \]
\[Pb = bQ. \]
Let \(\alpha_1, \alpha_2, \ldots, \alpha_n \) be the invariant factors\(^1\) of \(a \) and \(n_1, n_2, \ldots, n_n \) the
corresponding degrees so that \(b \) is the diagonal matrix \(\Sigma \alpha_i b_i i \), and let \(P = \| P_{ij} \|, Q = \| Q_{ij} \| \); then
\[(11) \]
\[P_{ij}\alpha_i = \alpha_i Q_{ij}. \]
By the division transformation we may set
\[P_{ij} = R_{ij}\alpha_i + p_{ij}, \quad Q_{ij} = S_{ij}\alpha_i + q_{ij} \]
and then from (10) we have
\[R_{ij} = S_{ij}, \quad p_{ij}\alpha_i = \alpha_i q_{ij} \]
or, if \(p = \| p_{ij} \|, q = \| q_{ij} \|, \)
\[(12) \]
\[pb = bq. \]
Hence \(P = p, Q = q \) is a solution of (10) for which the degree of \(p_{ij} \) is less than
that of \(\alpha_i \) and the degree of \(q_{ij} \) is less than that of \(\alpha_i \). It is then evident that,
when the general solution \(p, q \) of (12) is found, then the general solution of
(10) has the form
\[P = bR + p, \quad Q = Rb + q \]
where \(R \) is an arbitrary matrix polynomial in \(\lambda \). We are however not con-
cerned with \(R \); for
\[LPL^{-1} = LbRL^{-1} + LpL^{-1} = aM^{-1}RL^{-1} + LpL^{-1} \]
so that in (9) the value of \(y \) depends on \(p \) only.

\(^{1}\) Since we may add a scalar to \(x \) we may clearly assume that the rank of \(a \) is \(n \).
The general solution of (12) is given by

\[p_{ij} = \frac{\alpha_i}{\alpha_j} s_{ij}, \quad p_{ji} = s_{ji} \]

(13)

\[q_{ij} = s_{ij}, \quad q_{ji} = \frac{\alpha_i}{\alpha_j} s_{ji} \] \(i \neq j \)

where \(s_{k\mu} \) is an arbitrary polynomial whose degree is at most \(n_\mu - 1 \) and which therefore depends on \(n_\mu \) parameters. It follows that the total number of parameters in the value of \(y \) is that already given in §7.01.

7.04 The direct product. We shall consider in this section some properties of the direct product which was defined in §5.10.

Theorem 3. If \(f_{ij} \) \((i, j = 1, 2, \cdots, m)\) is a set of matrices, of order \(n \), for which

\[f_{ij} f_{pq} = \delta_{jp} f_{iq}, \quad \sum_{i=1}^{m} f_{ii} = 1, \]

then \(m \) is a factor of \(n \) and any matrix of order \(n \) can be expressed uniquely in the form \(\Sigma a_{ij} f_{ij} \) where each \(a_{ij} \) is commutative with every \(f_{pq} \); and, if \(n = mr \), the rank of each \(f_{pq} \) is \(r \).

For, if \(x \) is an arbitrary matrix and we set

\[a_{ij} = \sum_{k=1}^{m} f_{ki} x f_{kj}, \]

a short calculation shows:

(i) \(x = \Sigma a_{ij} f_{ij} \);

(ii) \(a_{ij} f_{pq} = f_{pq} a_{ij} \) for all \(i, j, p, q \);

(iii) the set \(\mathcal{A} \) of all matrices of the form (15) is closed under the operations of addition and multiplication;

(iv) if \(b_{ii}, b_{ji}, \cdots \) are members of \(\mathcal{A} \), then \(\Sigma b_{ii} f_{ij} \) is zero if, and only if, each \(b_{ii} = 0 \).

If \((a_1, a_2, \cdots, a_l) \) is a basis of \(\mathcal{A} \), it follows that

\[(a_p f_{ij}; p = 1, 2, \cdots, l; i, j = 1, 2, \cdots, m) \]

is equivalent to the basis \((e_{ij}; i, j = 1, 2, \cdots, n) \) of the set of matrices of order \(n \). This basis contains \(lm^2 \) independent elements and hence \(n^2 = lm^2 \) so that \(n = mr, l = r^2 \). Let \(r_{ii} \) be the rank of \(f_{ij} \). Since \(f_{ii} = f_{ij} f_{ji} \), it follows from Theorem 8 of chapter I that \(r_{ii} \leq r_{ji} \); also from \(f_{ij} f_{ji} = f_{ii} \) we have \(r_{it} \leq r_{ii} \); hence \(r_{it} = r_{ji} \) and therefore each \(r_{ji} \) has the same value. Finally, since \(1 = \Sigma f_{ii} \), and \(f_{ii} f_{ji} = 0 (i \neq j) \) and \(r_{ii} = r_{ji} \), we have \(mr_{ii} = n \) and hence each \(r_{ij} = r \).
THE DIRECT PRODUCT

We shall now show that a basis \(g_{ij} \) can be chosen for \(\mathfrak{F} \) which satisfies the relations (14) with \(r \) in place of \(m \). Since the rank of \(f_{ii} \) is \(r \), we can set

\[
(16) \quad f_{ii} = \sum_{i=1}^{r} \alpha_{ik} S \beta_{ik} \quad (i = 1, 2, \cdots, m)
\]

where the sets of vectors \((\alpha_{ik}) \) and \((\beta_{ik}) \) \((i = 1, 2, \cdots, m; k = 1, 2, \cdots, r) \) each form a basis of the \(n \)-space since \(\sum_{i=1}^{m} f_{ii} = 1 \). If \((\alpha'_{ik}), (\beta'_{ik}) \) are the corresponding reciprocal sets and

\[
p_{ii} = \sum_{i=1}^{r} \beta'_{ik} S \alpha'_{ik} \quad (i = 1, 2, \cdots, m)
\]

we have, since \(S \alpha_{ik} \alpha'_{ik} = \delta_{ij} \delta_{kk} \),

\[
\Sigma p_{ii} = \Sigma f_{ii} p_{ii} = \Sigma \Sigma \alpha_{ik} S \beta_{ik} \beta'_{ij} S \alpha'_{ij} = \Sigma \alpha_{ik} \Sigma \alpha'_{ik} = 1,
\]

and similarly

\[
f_{ii} p_{ij} = \sum_{k} \alpha_{ik} S \alpha'_{ik}, \quad f_{ii} p_{ij} = 0 \quad (i \neq j).
\]

Hence

\[
(17) \quad f_{ii} = f_{ii} \Sigma p_{ii} = \sum_{k} \alpha_{ik} S \alpha'_{ik},
\]

that is \(\beta_{ik} = \alpha'_{ik} \).

Since \(f_{ij} = f_{i} f_{i} f_{jj} \), the left ground of \(f_{ij} \) is the same as that of \(f_{ii} \) and its right ground is the same as that of \(f_{ij} \). Let

\[
f_{ij} = \Sigma \alpha_{ik} S \gamma_{jk}.
\]

The vectors \(\gamma_{jk} \) \((k = 1, 2, \cdots, r) \) then form a basis for the set \(\alpha'_{ik} \) \((k = 1, 2, \cdots, r) \) and, since the basis chosen for this set in (16) is immaterial, we may suppose \(\gamma_{jk} = \alpha'_{jk} \) \((j = 1, 2, \cdots, m; k = 1, 2, \cdots, r) \), that is,

\[
f_{ij} = \sum_{k} \alpha_{ik} S \alpha'_{ik}.
\]

Similarly we may set \(f_{ij} = \Sigma \alpha_{ik} S \theta_{ik} \) and then since

\[
\sum_{k} \alpha_{ik} S \alpha'_{ik} = f_{ii} = f_{i} f_{j} = \sum_{k} \alpha_{ik} S \alpha'_{ik} \theta_{ik} = \Sigma \alpha_{ik} S \theta_{ik},
\]

we have \(\theta_{ik} = \alpha'_{ik} \) and therefore

\[
f_{ij} = \Sigma \alpha_{ik} S \alpha'_{ik}.
\]
and finally
\begin{equation}
 f_{ij} = f_{ii}f_{ij} = \sum_{k,s} \alpha_{ik}S\alpha_1'\alpha_{1s}S\alpha_1' = \Sigma \alpha_{ik}S\alpha_1'.
\end{equation}

If we now set \(\alpha_{ik} = Pe_{(i - 1)r + k} \), then by §1.09 \(P \) is non-singular and \(\alpha_1' = (P')^{-1}e_{(i - 1)r + k} \); hence, if
\begin{equation}
 h_{ij} = \sum_{k=1}^{r} e_{(i - 1)r + k}, \quad (j - 1)r + k,
\end{equation}
we have
\begin{equation}
 f_{ij} = Ph_{ii}P^{-1}.
\end{equation}

Also if
\begin{equation}
 k_{ij} = \sum_{s=0}^{m-1} e_{sr + i}, \quad qr + i = n_p + 1, \quad q + 1 \alpha_{ij}.
\end{equation}

then
\begin{equation}
 k_{ij}h_{ij} = e_{pr + i}, \quad q + 1 = e_{pr + i}, \quad qr + i = n_p + 1, \quad q + 1 \alpha_{ij}
\end{equation}

so that the set \((e_{ij}) \) of all matrices of order \(n \) may be regarded as the direct product of the sets \((h_{ij}) \) and \((k_{ij}) \). Finally, since any matrix can be expressed in the form \(\Sigma b_{ij}h_{ii} \), where the \(b_{ij} \) depend on the basis \((k_{ij}) \), it follows that an arbitrary matrix can also be expressed in the form
\(\Sigma b_{ij}h_{ii}P^{-1} = \Sigma Pb_{ij}P^{-1}f_{ij} \)

\(Pb_{ij}P^{-1} \) depends on the basis \((Pk_{ij}P^{-1}) \) and hence, if we set
\begin{equation}
 g_{ij} = Pk_{ij}P^{-1} \quad (i, j = 1, 2, \cdots, r)
\end{equation}
the \(g \)'s form a basis of \(\mathfrak{H} \) which satisfies (14).

7.05 **Functions of commutative matrices.** Let \(x \) and \(y \) be commutative matrices whose distinct roots are \(\lambda_1, \lambda_2, \cdots \) and \(\mu_1, \mu_2, \cdots \) respectively and let \(R_i \) be the principal idempotent unit of \(x \) corresponding to \(\lambda_i \) and similarly \(S_j \) the principal idempotent unit of \(y \) corresponding to \(\mu_j \). Since \(R_i \) and \(S_j \) are scalar polynomials in \(x \) and \(y \), they are commutative. If we set
\begin{equation}
 T_{ij} = R_iS_j
\end{equation}

those \(T_{ij} \) which are not 0 are linearly independent; for if \(\Sigma \xi_{ij}T_{ij} = 0 \), then
\begin{equation}
 0 = R_p\Sigma \xi_{ij}T_{ip}S_q = \xi_{pq}T_{pq},
\end{equation}
since \(R_pR_i = \delta_{pi}R_p, S_jS_q = \delta_{jq}S_q \), so that either \(\xi_{pq} = 0 \) or \(T_{pq} = 0 \).
From the definition of T_{ij} it follows that $T_{ij}T_{pj} = 0$ when $i \neq p$ or $j \neq q$, and $T_{ij}^2 = T_{ij}, \Sigma T_{ij} = 1$; hence

$$x = \sum [\lambda_i + (x - \lambda_i)]T_{ij}; \quad y = \sum [\mu_j + (y - \mu_j)]T_{ij},$$

where $(x - \lambda_i)T_{ij}$ and $(y - \mu_j)T_{ij}$ are nilpotent. If $\psi(\lambda, \mu)$ is any scalar polynomial then

$$\psi(\lambda\mu) = \psi(\lambda_i, \mu_j) + \sum \psi_{rs}^i(x - \lambda_i)^r(y - \mu_i)^s$$

where ψ_{rs}^i are scalars, we have therefore

$$\psi(x, y) = \sum \psi_{rs}^i(x - \lambda_i)^r(y - \mu_i)^sT_{ij}$$

where

$$T_{ij}^{rs} = (x - \lambda_i)^r(y - \mu_i)^sT_{ij}$$

and r runs from 1 to $\rho_i - 1$, where ρ_i is the smallest integer for which $(x - \lambda_i)^r, R_i = 0$, and s has a similar range with respect to y. The matrices T_{ij}^{rs} are commutative and each is nilpotent; and hence any linear combination of them is also nilpotent.

Let

$$z = \Sigma \psi(\lambda_i, \mu_j)T_{ij}, \quad w = \Sigma \psi_{rs}^iT_{ij}^{rs},$$

then w, being the sum of commutative nilpotent matrices, is nilpotent. If we take in z only terms for which $T_{ij} \neq 0$, we see immediately that the roots of z are the corresponding coefficients $\psi(\lambda_i, \mu_j)$; and the reduced characteristic function of z is found as in §2.12. We have therefore the following theorem which is due to Frobenius.

Theorem 4. If $R_i, S_j (i = 1, 2, \cdots; j = 1, 2, \cdots)$ are the principal idempotent units of the commutative matrices x, y and $T_{ij} = R_iS_j$; and if λ_i, μ_j are the corresponding roots of x and y, respectively; then the roots of any scalar function $\psi(x, y)$ of x and y are $\psi(\lambda_i, \mu_j)$ where i and j take only those values for which $T_{ij} \neq 0$.

This theorem extends immediately to any number of commutative matrices.

7.06 Sylvester's identities. It was shown in §2.08 that, if the roots of x are all distinct, the only matrices commutative with it are scalar polynomials in x; and in doing so certain identities, due to Sylvester, were derived. We shall now consider these identities in more detail.

We have already seen that

$$f(\lambda) = |\lambda - x| = \lambda^n + a_1\lambda^{n-1} + \cdots + a_{n-1}\lambda + a_n$$
the coefficient \(a_r \) of \(\lambda^{n-r} \) is \((-1)^r\) times the sum of the principal minors of \(x \) of order \(r \); these coefficients are therefore homogeneous polynomials of degree \(r \) in the coordinates of \(x \). We shall now denote \((-1)^r a_r\) by \([x]^r\). If \(x \) is replaced by \(\lambda x + \mu y \), then \([x]^r\) can be expressed as a homogeneous polynomial in \(\lambda, \mu \) of degree \(r \), and we shall write

\[
\left[\frac{\lambda x + \mu y}{r} \right] = \sum_{s=0}^{r} \binom{x}{s} \binom{y}{r-s} \lambda^s \mu^{r-s}.
\]

We shall further set, as in §2.08,

\[
(\lambda x + \mu y)^r = \sum_{s=0}^{r} \binom{x}{s} \binom{y}{r-s} \lambda^s \mu^{r-s},
\]

where \([x]^r\) is obtained by multiplying \(s \) \(x \)'s and \(t \) \(y \)'s together in every possible way and adding the terms so obtained.

In this notation the characteristic equation of \(\lambda x + \mu y \) is

\[
0 = \sum_{r=0}^{n} (-1)^r \left[\frac{\lambda x + \mu y}{r} \right] (\lambda x + \mu y)^{n-r} = \sum_{r,s,t} \binom{x}{s} \binom{y}{r-s} \binom{t}{s} \binom{n+s-r-t}{t} \lambda^s \mu^{r-s},
\]

where in the second summation \([x]^r\) or \([y]^r\) is to be replaced by 0 if either \(p \) or \(q \) is negative and \([x]^r\) or \([y]^r\) is 1. Since \(\lambda \) is an independent variable, the coefficients of its various powers in (25) are identically 0, and therefore

\[
\sum_{r,s,t=0}^{n} (-1)^r \binom{x}{s} \binom{y}{r-s} \binom{t}{s} \binom{n+s-r-t}{t} = 0 \quad (t = 0, 1, \ldots, n)
\]

a series of identical relations connecting two arbitrary matrices.

These identities can be generalized immediately. If \(x_1, x_2, \ldots, x_m \) are any matrices and \(\lambda_1, \lambda_2, \ldots, \lambda_m \), scalar variables, we may write

\[
\left[\sum_{r} \lambda_i x_i \right] = \sum_{r} \left[\begin{array}{cccc}
\frac{x_1}{r_1} & \frac{x_2}{r_2} & \cdots & \frac{x_m}{r_m}
\end{array} \right] \lambda_1^{r_1} \lambda_2^{r_2} \cdots \lambda_m^{r_m} \quad (\Sigma r_i = r)
\]

\[
(\Sigma \lambda_i x_i)^r = \sum_{r} \left[\begin{array}{cccc}
\frac{x_1}{r_1} & \frac{x_2}{r_2} & \cdots & \frac{x_m}{r_m}
\end{array} \right] \lambda_1^{r_1} \lambda_2^{r_2} \cdots \lambda_m^{r_m}
\]

and by the same reasoning as before we have

\[
\sum_{r} \sum_{r_1, \ldots, r_m} (-1)^r \left[\begin{array}{cccc}
\frac{x_1}{s_1-r_1} & \frac{x_2}{s_2-r_2} & \cdots & \frac{x_m}{s_m-r_m}
\end{array} \right] = 0
\]

\[
(\sum_{i=1}^{m} r_i = r)
\]
where \(s_1, s_2, \ldots, s_m \) is any partition of \(n \), zero parts included, and as before a bracket symbol is 0 when any exponent is negative.

Since \(\left[\begin{array}{c} \Sigma \lambda_i x_i \\
\end{array} \right] \\
r
\end{array} \right] \) is the sum of the principal minors of \(\Sigma \lambda_i x_i \) of order \(r \), we see that \(\left[\begin{array}{cccc}
x_1 & x_2 & \cdots & x_m \\
\r_1 & \r_2 & \cdots & \r_m
\end{array} \right] (\Sigma r_i = r) \) is formed as follows. Take any principal minor of \(x_1 \) of order \(r \) and the corresponding minors of \(x_2, x_3, \ldots, x_m \) and replace \(r_3 \) of its columns by the corresponding columns of \(x_2 \), then replace \(r_3 \) of the remaining columns by the corresponding ones of \(x_3 \), and so on; do this in every possible way for each of the minors of order \(r \) of \(x_1 \) and add all the terms so obtained.

There is a great variety of relations connecting the scalar functions defined above, a few of which we note here for convenience.

(i) \[
\begin{align*}
\begin{bmatrix}
1 \\
r
\end{bmatrix} &= \frac{n!}{r!(n-r)!} \\
\begin{bmatrix}
x \\
r
\end{bmatrix} &= \frac{(n-r)!}{s!(n-r-s)!} \\
\begin{bmatrix}
x \\
n
\end{bmatrix} &= |\begin{bmatrix}
x \\
r
\end{bmatrix}|, \\
\begin{bmatrix}
x \\
r
\end{bmatrix} &= \frac{(r+s)!}{r!s!} \\
\end{align*}
\]

(ii) The value of \(\left[\begin{array}{cccc}
x_1 & x_2 & \cdots & x_m \\
r & r_2 & \cdots & r_m
\end{array} \right] \) is unchanged by a cyclic permutation of the \(x \)'s.

(iii) \[
\begin{align*}
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
r_1 & r_2 & \cdots & r_m
\end{bmatrix} &= \frac{n!}{\Pi(r_i!)(n-\Sigma r_i)!} \\
\begin{bmatrix}
x_1 & x_2 & \cdots & x_m \\
r_1 & r_2 & \cdots & r_m
\end{bmatrix} &= \frac{(n-\Sigma r_i)!}{s!(n-s-\Sigma r_i)!} \begin{bmatrix}
x_1 & x_2 & \cdots & x_m \\
r_1 & r_2 & \cdots & r_m
\end{bmatrix} \\
\begin{bmatrix}
x & \cdots & x & y_1 & \cdots & y_p \\
r_1 & r_2 & \cdots & s_1 & \cdots & s_p
\end{bmatrix} &= \frac{\Sigma r_i!}{\Pi(r_i!)} \begin{bmatrix}
x & y_1 & \cdots & y_p \\
r_1 & s_1 & \cdots & s_p
\end{bmatrix} \\
\end{align*}
\]

(iv) \[
\begin{bmatrix}
x \\
r
\end{bmatrix} \begin{bmatrix}
y_1 & y_2 & \cdots & y_n \\
1 & 1 & \cdots & 1
\end{bmatrix} = \Sigma \begin{bmatrix}
xy_1 & xy_2 & \cdots & xy_n \\
1 & 1 & \cdots & 1
\end{bmatrix}
\]

where the summation extends over the \(n!/r!(n-r)! \) ways of choosing \(r \) integers out of \(1, 2, \ldots, n \), the order being immaterial.

7.07 Similar matrices. In addition to the identities discussed in the preceding section Sylvester gave another type, a modification of which we shall now discuss. If \(x, y, a \) are arbitrary matrices, we have

\[
\begin{align*}
x^r + a - ay^r + 1 &= x(x^a + x^{r-1}ay + x^{r-2}ay^2 + \cdots + ay^r) \\
&\quad - (x^a + x^{r-1}ay + x^{r-2}ay^2 + \cdots + ay^r)y \\
\end{align*}
\]

or say

\[
x^r + a - ay^r + 1 = x(x, a, y), (x, a, y), y
\]
where

\[(x, a, y)_r = \sum_{i=0}^{r} x^{r-i} ay^i.\]

Suppose now that \(x\) and \(y\) satisfy the same equation \(f(\lambda) = 0\) where

\[f(\lambda) = \lambda^m + a_1\lambda^{m-1} + \cdots + a_{m-1}\lambda + a_m\]

\(x\) and \(y\) being commutative with each \(a_i\) and \(a\) commutative with every \(a_i\). Let

\[(31) \quad u = \sum_{i=0}^{m-1} a_i(x, a, y)_{m-i-1};\]

then

\[(32) \quad 0 = f(x)a - af(y) = \sum a_i(x^{m-i}a - ay^{m-i}) = xu - uy.\]

If \(|u| \neq 0\), it follows that \(y = u^{-1}xu\), that is, \(x\) and \(y\) are similar.

It can be shown that \(a\) can be chosen so that \(|u| \neq 0\) provided \(x\) and \(y\) have the same invariant factors and \(f(\lambda)\) is the reduced characteristic function.