Contents

1 Introduction 1

1.1 Approaches to solving the Schrödinger equation 2
 1.1.1 Discretisation 2
 1.1.2 Levels of approximation: Hartree-Fock, limited CI, full CI 4
 1.1.3 Multi-reference approaches 6
1.2 Properties of potential energy surfaces 7
 1.2.1 Size extensivity and size consistency 7
 1.2.2 Invariance of the energy for orbital rotations 9
1.3 Requirements for an appropriate ab initio method 9
1.4 Outline of this thesis 12

2 Multi-reference Møller-Plesset perturbation theory 15
 Implementation to third order and applications 16

2.1 Introduction 16
2.2 Theory 17
2.3 Implementation 20
2.4 Applications 26
 2.4.1 Singlet-triplet splitting of methylene 26
 2.4.2 The C₆ dispersion coefficient of the He-dimer 28
 2.4.3 Dissociation of O₂ and N₂ 29
 2.4.4 Dissociation of ethene 33
 2.4.5 The A₉ and B₇ ground states of 1,1'-bicyclohexxylidene 34
2.5 Conclusions 36

3 Convergence behaviour of multi-reference perturbation theory 41
 An indicator 42

3.1 Introduction 42
3.2 Theory 42
3.3 Tests 44
3.4 Application to N₂ 48
3.5 Application to O₂ 51
3.6 Conclusions 53