1) Consider N spinless particles obeying Bose-Einstein statistics. Instead of the particles being in a box, assume that they are trapped in a shallow potential of the form $V(r) = \frac{1}{2}m\omega^2 r^2$.

a) Find the condensation temperature as a function of N and ω. In order to do this problem, you should convert the sum over oscillator states to an integral. You need to take into account the degeneracy of the states for a given energy $E = \hbar \omega (n + 1/2)$.

b) Assuming that there are 10^8 trapped sodium atoms, what is the frequency ω if $T_c = 10^{-6}$ K.

c) Find the specific heat as a function of T below the condensation temperature.

2) Consider a gas of spinless particles obeying Bose-Einstein statistics in two dimensions, confined to a box. Show that Bose-Einstein condensation does not occur.

3) Same as in (2), but now assume that the atoms are trapped by a two-dimensional potential of the form $V(r) = \frac{1}{2}m\omega^2 r^2$. Show that Bose-Einstein condensation can occur.

4) Show that the chemical potential μ, for N spinless particles obeying Bose-Einstein statistics behaves as $\mu \sim -k(T - T_c)^2/T_c^2$, and so the heat capacity has the form of figure 11.9 in Mandl.

5) 11.8 in Mandl.

6) 11.10 in Mandl.